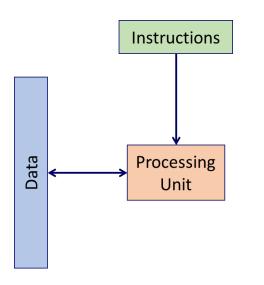
CS152: Computer Systems Architecture SIMD Operations

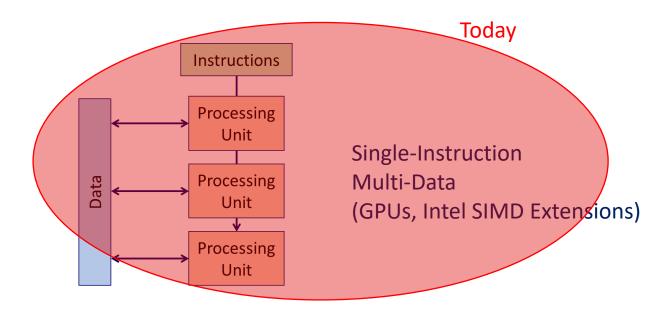
Sang-Woo Jun

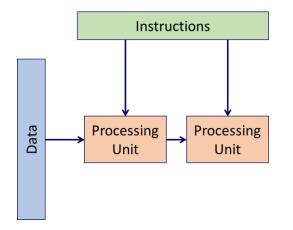
Winter 2021

Flynn taxonomy

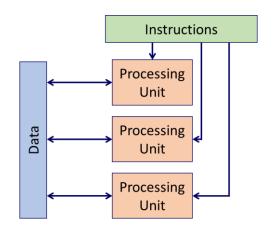


Single-Instruction
Single-Data
(Single-Core Processors)





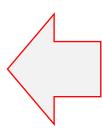
Multi-Instruction Single-Data (Systolic Arrays,...)



Multi-Instruction Multi-Data (Parallel Processors)

Modern Processor Topics

- ☐ Transparent Performance Improvements
 - Pipelining, Caches
 - Superscalar, Out-of-Order, Branch Prediction, Speculation, ...
 - Covered in CS250A and others
- ☐ Explicit Performance Improvements
 - SIMD extensions, AES extensions, ...
 - O ..



SIMD operations

- ☐ Single ISA instruction performs same computation on multiple data
- Typically implemented with special, wider registers
- ☐ Example operation:
 - Load 32 bytes from memory to special register X
 - Load 32 bytes from memory to special register Y
 - Perform addition between each 4-byte value in X and each 4 byte value in Y
 - Store the four results in special register Z

For i in (0 to 7): Z[i] = X[i] + Y[i];

- Store Z to memory
- ☐ RISC-V SIMD extensions (P) is still being worked on (as of 2021)

Example: Intel SIMD Extensions

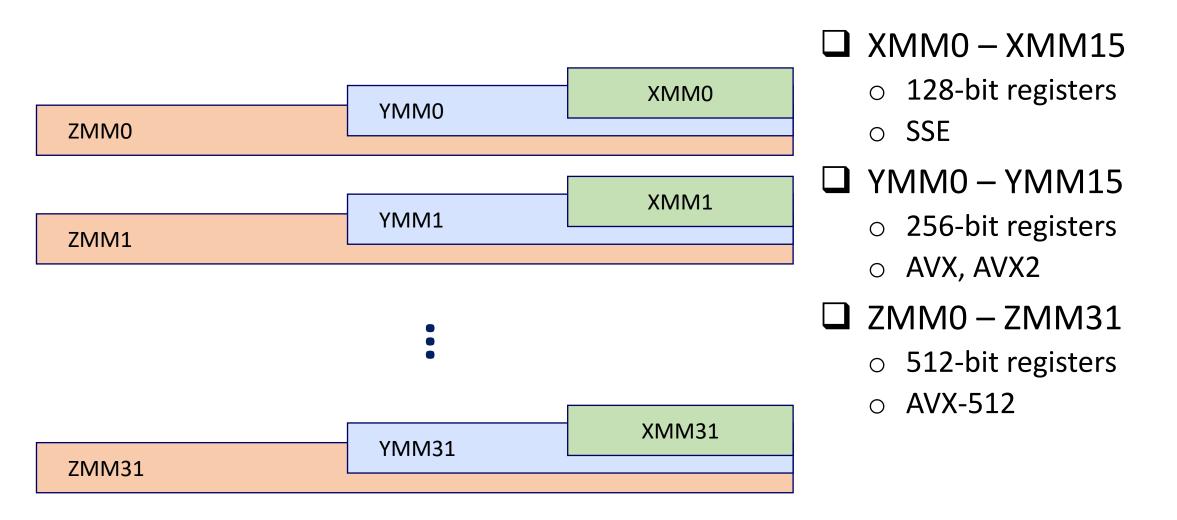
- ☐ More transistors (Moore's law) but no faster clock, no more ILP...
 - More capabilities per processor has to be explicit!
- ☐ New instructions, new registers
 - Must be used explicitly by programmer or compiler!
- ☐ Introduced in phases/groups of functionality
 - SSE SSE4 (1999 –2006)
 - 128 bit width operations
 - AVX, FMA, AVX2, AVX-512 (2008 2019)
 - 256 512 bit width operations
 - o F16C, and more to come?

Aside: Do I Have SIMD Capabilities?

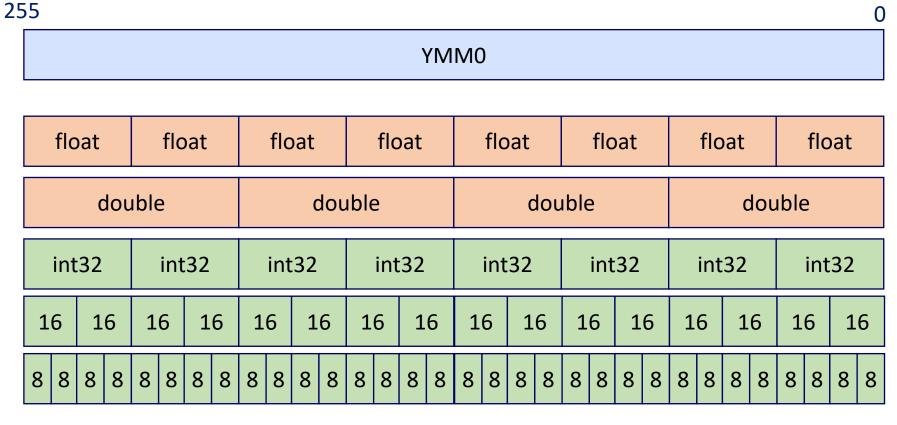
☐ less /proc/cpuinfo

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat p se36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm con stant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmp erf tsc_known_freq pni pc|mu|qdq dtes64 monitor ds_cp| vmx est tm2 ssse3 sdbg fma cx1 6 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f 16c rdrand lahf_Im abm 3dnowprefetch cpuid_fault epb invpcid_single pti ssbd ibrs Ibp b stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp flush_l1d

Intel SIMD Registers (AVX-512)



SSE/AVX Data Types



Operation on 32 8-bit values in one instruction!

Processor Microarchitectural Effects on Power Efficiency

- ☐ The majority of power consumption of a CPU is not from the ALU
 - Cache management, data movement, decoding, and other infrastructure
 - Adding a few more ALUs should not impact power consumption
- Indeed, 4X performance via AVX does not add 4X power consumption
 - Fromil7 4770K measurements:
 - o Idle: 40 W
 - Under load : 117 W
 - Under AVX load: 128 W

Compiler Automatic Vectorization

- ☐ In gcc, flags "-O3 —mavx —mavx2" attempts automatic vectorization
- ☐ Works pretty well for simple loops

```
int a[256], b[256], c[256];
void foo () {
    for (int i=0; i<256; i++) a[i] = b[i] * c[i];
}

vmovdqa xmm1, XMMWORD PTR b[rax]
add rax, 16
vpmulld xmm0, xmm1, XMMWORD PTR c[rax-16]
vmovaps XMMWORD PTR a[rax-16], xmm0
cmp rax, 1024
jne .L2</pre>
```

.L2:

- ☐ But not for anything complex
 - o E.g., naïve bubblesort code not parallelized at all

Generated using GCC explorer: https://gcc.godbolt.org/

Intel SIMD Intrinsics

- ☐ Use C functions instead of inline assembly to call AVX instructions
- ☐ Compiler manages registers, etc
- Intel Intrinsics Guide
 - https://software.intel.com/sites/landingpage/IntrinsicsGuide
 - One of my most-visited pages...

```
e.g.,

__m256 a, b, c;

__m256 d = _mm256_fmadd_ps(a, b, c); // d[i] = a[i]*b[i]+c[i] for i = 0 ...7
```

Intrinsic Naming Convention

```
_ mm<width>_[function]_[type]
```

E.g., _mm256_fmadd_ps:
 perform fmadd (floating point multiply-add) on
 256 bits of
 packed single-precision floating point values (8 of them)

Width	Prefix
128	_mm_
256	_mm256_
512	_mm512_

Not all permutations exist! Check guide

Туре	Postfix	
Single precision	_ps	
Double precision	_pd	
Packed signed integer	_epiNNN (e.g., epi256)	
Packed unsigned integer	_epuNNN (e.g., epu256)	
Scalar integer	_siNNN (e.g., si256)	

Example: Vertical Vector Instructions

- ☐ Add/Subtract/Multiply
 - _mm256_add/sub/mul/div_ps/pd/epi
 - Mul only supported for epi32/epu32/ps/pd
 - Div only supported for ps/pd
 - Consult the guide!
- ☐ Max/Min/GreaterThan/Equals
- ☐ Sqrt, Reciprocal, Shift, etc...
- ☐ FMA (Fused Multiply-Add)
 - (a*b)+c, -(a*b)-c, -(a*b)+c, and other permutations!
 - Consult the guide!


```
a
       X
               X
                      X
                            X
b
C
d
```

```
__m256 a, b, c;
__m256 d = _mm256_fmadd_pd(a, b, c);
```

Integer Multiplication Caveat

- ☐ Integer multiplication of two N bit values require 2N bits
- ☐ E.g., __mm256_mul_epi32 and __mm256_mul_epu32
 - Only use the lower 4 32 bit values
 - Result has 4 64 bit values
- ☐ E.g., __mm256_mullo_epi32 and __mm256_mullo_epu32
 - Uses all 8 32 bit values
 - Result has 8 truncated 32 bit values
- ☐ And more options!

Case Study: Matrix Multiply

☐ Branch:

Boser & Katz,

"CS61C: Great Ideas In Computer Architecture"

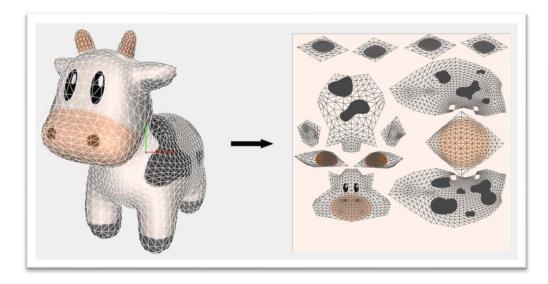
Lecture 18 – Parallel Processing – SIMD

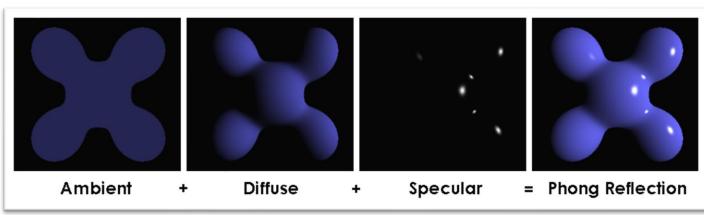
CS152: Computer Systems Architecture GPU Computing Introduction

Sang-Woo Jun Winter 2021

Graphic Processing – Some History

- ☐ 1990s: Real-time 3D rendering for video games were becoming common
 - Doom, Quake, Descent, ... (Nostalgia!)
- ☐ 3D graphics processing is immensely computation-intensive





Texture mapping

Shading

Graphic Processing – Some History

- ☐ Before 3D accelerators (GPUs) were common
- CPUs had to do all graphics computation, while maintaining framerate!
 - Many tricks were played

Doom (1993): "Affine texture mapping"

- Linearly maps textures to screen location, disregarding depth
- Doom levels did not have slanted walls or ramps, to hide this

Graphic Processing – Some History

- ☐ Before 3D accelerators (GPUs) were common
- CPUs had to do all graphics computation, while maintaining framerate!
 - Many tricks were played

Quake III arena (1999) : "Fast inverse square root" magic!

```
float Q_rsqrt( float number )
{
    const float x2 = number * 0.5F;
    const float threehalfs = 1.5F;

union {
        float f;
        uint32_t i;
    } conv = {number}; // member 'f' set to value of 'number'.
    conv.i = 0x5f3759df - ( conv.i >> 1 );
    conv.f *= ( threehalfs - ( x2 * conv.f * conv.f ) );
    return conv.f;
}
```

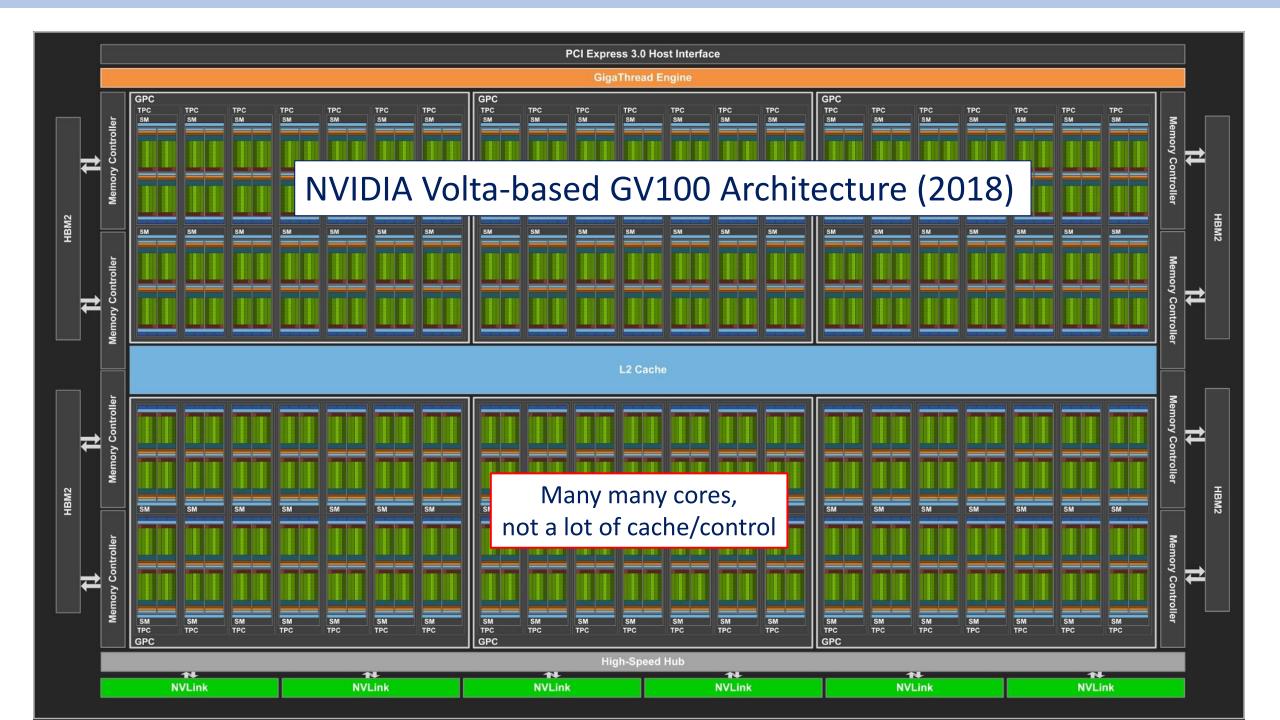
Introduction of 3D Accelerator Cards

- Much of 3D processing is short algorithms repeated on a lot of data
 pixels, polygons, textures, ...
- ☐ Dedicated accelerators with simple, massively parallel computation

A Diamond Monster 3D, using the Voodoo chipset (1997) (Konstantin Lanzet, Wikipedia)

General-Purpose Graphic Processing Units (GPGPU)

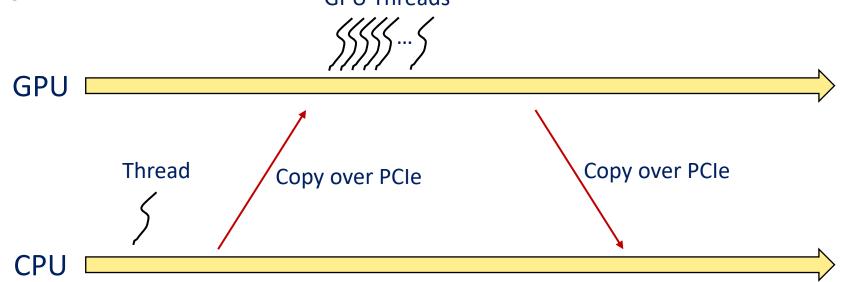
- ☐ Massively parallel architecture created for graphics processing, opened up for general purpose programming
 - Thousands of simple cores with high floating-point processing capability
 - Floating point operations important for graphics processing
 - Very fast off-chip memory originally used for graphics processing



Massively Parallel Architecture For Massively Parallel Workloads!

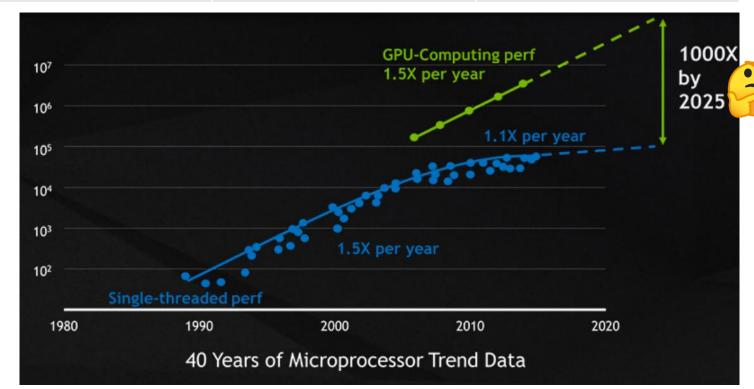
- □ NVIDIA CUDA (Compute Uniform Device Architecture) 2007
 - A way to run custom programs on the massively parallel architecture!
- ☐ OpenCL specification released 2008
- ☐ Both platforms expose synchronous execution of a massive number of threads

 GPU Threads



Peak Performance vs. CPU

	Throughput	Power	Throughput/Power
Intel Skylake	128 SP GFLOPS/4 Cores	100+ Watts	~1 GFLOPS/Watt
NVIDIA V100	15 TFLOPS	200+ Watts	~75 GFLOPS/Watt



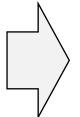
Also,

GPU programming abstraction

- ☐ "SIMT" (Single Instruction Multiple Threads), introduced by NVIDIA
 - Simply put: Identical program ("Kernel") executed on multiple threads
 - Thread ID is given as a parameter to the program,
 so each thread can perform different work despite identical code
 - Another kernel parameter is "block size", the number of threads to use

CPU Code example

```
for (ii = 0; ii < cnt; ++ii) {
C[ii] = A[ii] + B[ii];
}
```

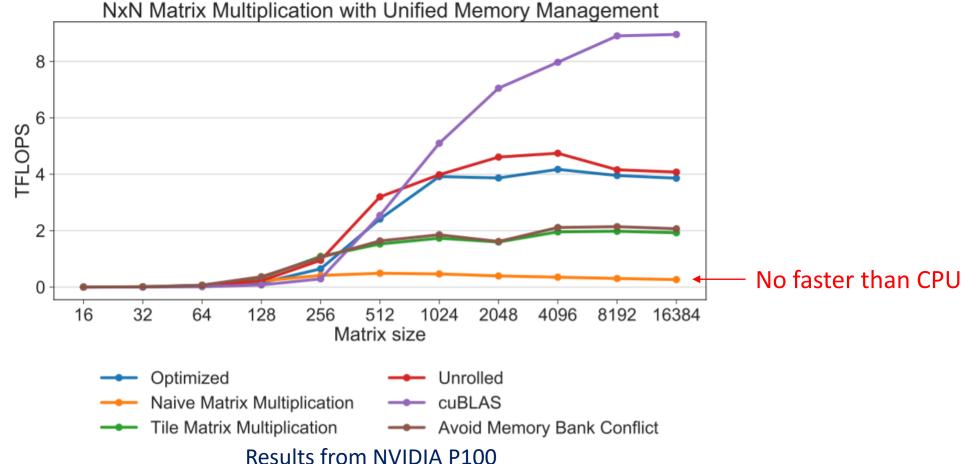


GPU Code example

```
__global___ void KernelFunction(...) {
  int tid = threadIdx.x;
  int blocksize = ceiling(cnt/blockDim.x);
  for (i = 0; i < blocksize; ++i ) {
    int ii = blocksize*tid+i;
    if ( ii < cnt ) C[ii] = A[ii] + B[ii];
  }
}</pre>
```

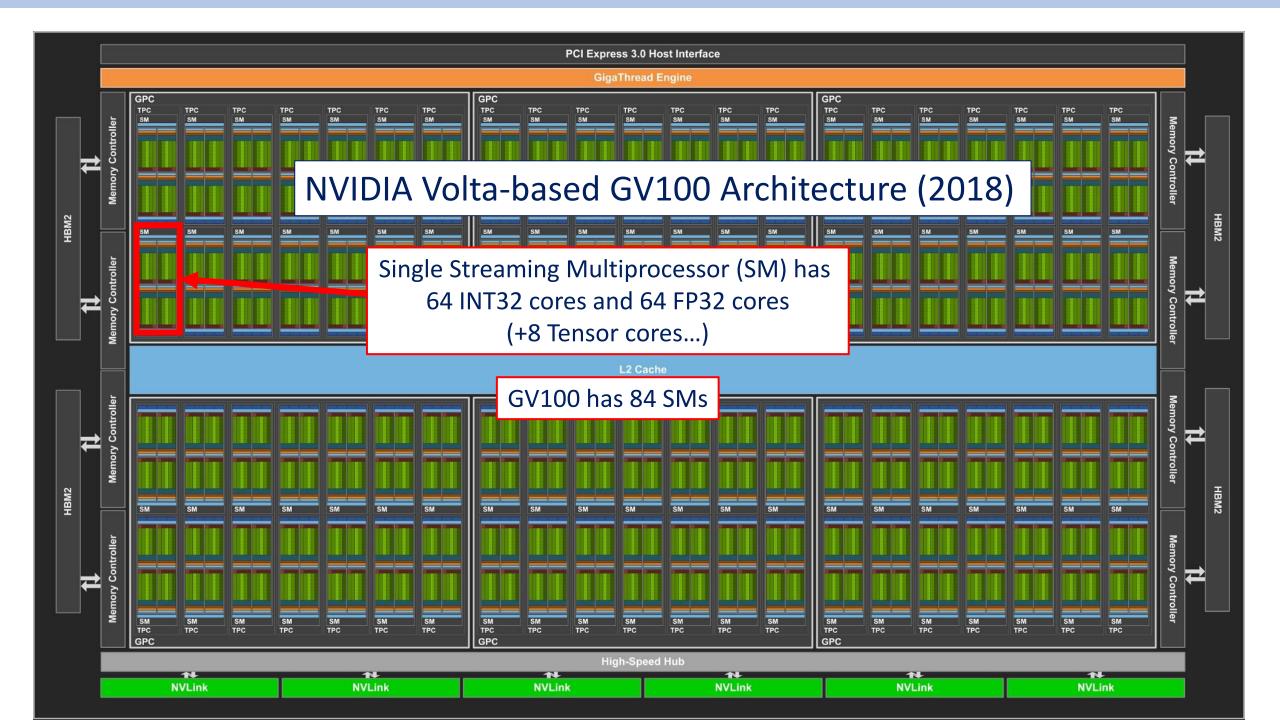
Thread dimensions given as part of request from host software

Matrix Multiplication Performance Engineering



100

Architecture knowledge is needed (again)

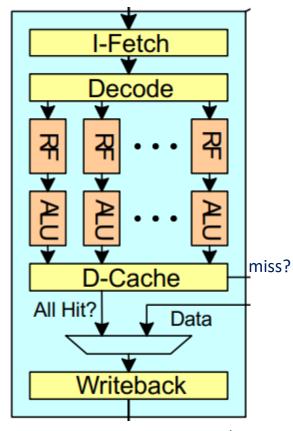


GPU processor architecture

- ☐ GPUs have thousands of threads running concurrently at multiple gigabytes!
- ☐ Much simpler processor architecture
 - Dozens of threads scheduled together in a SIMD fashion
 - Much simpler microarchitecture (doesn't need to boot Linux!)
- ☐ Much higher power budget
 - CPUs try to maintain 100 W power budget (Pentium 4 till now)
 - GPUs regularly exceed 400 W

GPU processor architecture

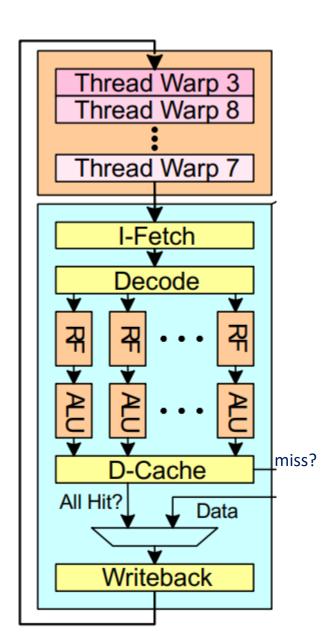
- ☐ Cores are organized into units of "warps"
 - Threads in a warp share the same Fetch and decode units
 - Drastically reduces chip resource usage
 - One reason why GPUs can fit so many cores
 - Basically a warp is one SIMD thread
 - But exposes multithread abstraction to the programmer
 - Typically 32 threads per warp for NVIDIA, but may change
 - Warp size information is not part of programming abstraction



Source: Tor Aamodt

GPU processor architecture

- ☐ Each warp hardware can handle many sets of threads
 - Context switch in case of memory access request, to hide memory access latency
- ☐ A large block of threads can map across many streaming multiprocessors
 - Thread 0 to 31 map to warp 0,
 Thread 32 to 63 map to warp 1, ...



Warp scheduling caveats

- ☐ Remember: Threads within a block share the same fetch, decode units
 - All threads in a warp are always executing the same instruction
 - What if their execution diverges?
 - e.g., if (tid%2) func1(), else func2()
 - e.g., if (A[tid] < 100) X++, else Y++
- ☐ Divergence across warps don't matter
 - Different warps, different fetch+decode
- ☐ What about intra-warp divergence?

Warp scheduling caveats

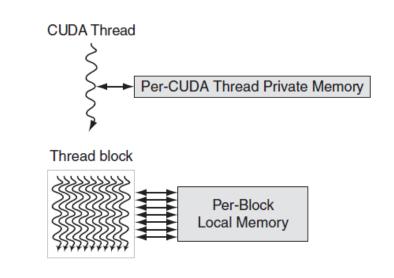
- ☐ Intra-warp execution divergence incurs "control divergence"
 - The warp processor must execute both paths, one after another
 - Whole warp will execute one direction first with some threads suspended, and the other direction with the other threads suspended
 - o If 32 threads go down 32 different branches, no performance gain with SIMD!
- ☐ Warps have been 32-threads so far, but may change in the future

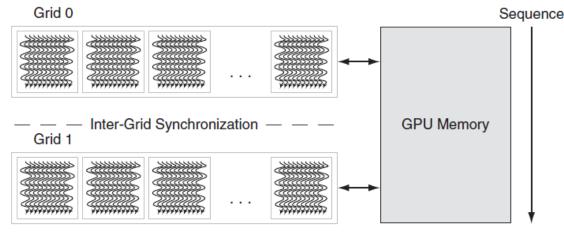
```
if (threadIdx.x < 4) {
    A;
    B;
} else {
    X;
    Y;
    A;
    B;
};
</pre>
Time
```

2018, "Using CUDA Warp-Level Primitives," NVIDIA

GPU memory architecture

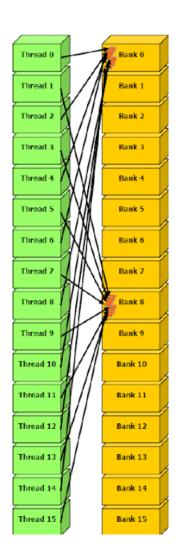
- ☐ Not much on-chip memory per thread
 - o 1024 Registers per FP32 core
 - 96 KB Shared memory
- ☐ Relatively fast off-chip "global" memory
 - o But not fast enough!
 - GDDR5 or HBM2 can deliver up to ~1TB/s
 - Shared across 2048+ threads...
- ☐ Pretty much no memory consistency between blocks
 - Once data goes to off-chip main memory, explicit synchronization critical!





GPU memory architecture

- ☐ Remember: A warp has 32 threads
 - They can all be accessing shared memory at once
 - Difficult to have multiple ports on same memory region
 - Serializing memory access will kill performance
 - Performance will be limited by one shared memory access per thread per cycle
- Organized into banks to distribute access
 - Best performance if all threads in warp access different banks
 - Best performance if all threads access the same back (broadcast)
 - Otherwise, bank conflicts drastically reduce performance



So what are GPUs good for?

- ☐ Bottlenecks to watch:
 - PCIe bandwidth is slow, so communication/computation ratio should be low
 - SIMD operations at 32-thread warps, so less branching
 - "Regularly structured" computation
- ☐ Good example is matrix multiplication
- ☐ Also, Computing convolutions
 - Deep neural networks became feasible with GPUs!