CS152: Computer Systems Architecture
SIMD Operations

(1
>

Sang-Woo Jun

Winter 2021
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

Flynn taxonomy

Instructions

Single-Instruction

A 4

Processing Single-Data
Unit (Single-Core Processors)
Instructions
Instructions l'
Processing
. . Unit . .
Multi-Instruction Multi-Instruction
- - Single-Data Processing | Multi-Data
Processing N Processing . Unit

Ut Ui (Systolic Arrays,...) (Parallel Processors)

Processing |
Unit |

Modern Processor Topics

J Transparent Performance Improvements
o Pipelining, Caches
o Superscalar, Out-of-Order, Branch Prediction, Speculation, ...
o Covered in CS250A and others

d Explicit Performance Improvements

o SIMD extensions, AES extensions, ...
O ..

SIMD operations

J Single ISA instruction performs same computation on multiple data
d Typically implemented with special, wider registers

J Example operation:

o Load 32 bytes from memory to special register X

o Load 32 bytes from memory to special register Y

o Perform addition between each 4-byte value in X and each 4 byte value in Y
o Store the four results in special register Z For i in (0 to 7): Z[i] = X[i] + Yil;
o Store Zto memory

d RISC-V SIMD extensions (P) is still being worked on (as of 2021)

Example: Intel SIMD Extensions

d More transistors (Moore’s law) but no faster clock, no more ILP...
o More capabilities per processor has to be explicit!

J New instructions, new registers
o Must be used explicitly by programmer or compiler!

1 Introduced in phases/groups of functionality
o SSE —SSE4 (1999 —-2006)
e 128 bit width operations

o AVX, FMA, AVX2, AVX-512 (2008 — 2019)
e 256 —512 bit width operations

o F16C, and more to come?

Aside: Do | Have SIMD Capabillities?

 less /proc/cpuinfo

Zs : tpu vme de pse tsc msr pae moe oxB apic sep mbrr pge mca cmoy
|+|u b dits acei mmx fxsrisze sse? == bt tm rbc svscal | rx pdeelebh rdtsce

ﬁ _t=c art archopertmon pebs bts rep_sgood nopl _turuhthruw|+u¢ t:EIJlﬂljirHrme

r sc_lnown_T req_pn rulmu|1d1 dtesBd monitor ds_cpl wmx est tm? sssed sdbel fma lox]
“t;r rjum poid|ssed 1 szed 2 «Zapic movbe popcnt tsco 4 1||nw timer aes xsave|avx |

1Bc rdrand laht_Im abm : dnnHrrH+c+uh cpuid_fault eph invecid single pti sshd ibrs The
b stibpe tpr_shadow wrmi flexpriority ept wpid fsezshase tsc_adjust bmil lave?| smep llrnl_
erms irvecid mox rdseed adx smap clf lushopt intel_pt xsaveopt xsavec xgethwl xsaves

dtherm ida arat pln pts hwe bwe_not ity bwe_act_window bwe_epe flushe [1d

Intel SIMD Registers (AVX-512)

XMMO
YMMO
ZMMO
XMM1
YMM1
/MM1
[
[
[
XMM31
YMM31

/MM31

d XMMO - XMM15

o 128-bit registers
o SSE

d YMMO - YMM15

o 256-bit registers
o AVX, AVX2

J ZMMO - ZMM31
o 512-bit registers
o AVX-512

SSE/AVX Data Types

255 0
YMMO
float float float float float float float float
double double double double
int32 int32 int32 int32 int32 int32 int32 int32
16 | 16 |16 | 16 |16 | 16 |16 | 16 |16 | 16 | 16 | 16 | 16 | 16 | 16 | 16
8|8/8(8|8|8(8|8(8(8/8(8|8|8(8(8|8|8|8(8|8|8(8|8|8(8|8|8(8|8(8|8

Operation on
32 8-bit values
in one instruction!

Processor Microarchitectural Effects on
Power Efficiency

J The majority of power consumption of a CPU is not from the ALU
o Cache management, data movement, decoding, and other infrastructure
o Adding a few more ALUs should not impact power consumption

J Indeed, 4X performance via AVX does not add 4X power consumption
o Fromil7 4770K measurements:
o ldle:40 W
o Underload:117 W
o Under AVX load :128 W

Compliler Automatic Vectorization

1 In gcc, flags “-O3 —mavx —mavx2” attempts automatic vectorization
J Works pretty well for simple loops

.L2:
. vmovdga xmml, XMMWORD PTR b[rax
int a[256], b[256], c[256]; G ’ L=
. add rax, 16
void foo () { 11d o 1, XMMWORD PTR c 16]
vpmu Xmme, xmm MM c[rax-
for (int i=0; i<256; i++) a[i] = b[i] * c[i]; P e > AT
} vmovaps XMMWORD PTR a[rax-16], xmm@
cmp rax, 1024
jne L2

Generated using GCC explorer: https://gcc.godbolt.org/

d But not for anything complex
o E.g., naive bubblesort code not parallelized at all

https://gcc.godbolt.org/

Intel SIMD Intrinsics

d Use C functions instead of inline assembly to call AVX instructions
J Compiler manages registers, etc

1 Intel Intrinsics Guide
o https://software.intel.com/sites/landingpage/IntrinsicsGuide
o One of my most-visited pages...

e.g.,
~_m2564, b, c;
__m256d=_mm256 fmadd _ps(a, b, c); // d[i] = a[i]*b[i]+c[i] fori=0...7

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Intrinsic Naming Convention

d _mm<width>_[function] [type]

o E.g., mm256 fmadd ps:

perform fmadd (floating point multiply-add) on
256 bits of

packed single-precision floating point values (8 of them)

128 _mm_ Single precision _ps
256 _mm256_ Double precision _pd
512 ~mmb512 Packed signed integer _epiNNN (e.g., epi256)

Packed unsigned integer _epuNNN (e.g., epu256)

Not all permutations exist! Check guide Scalar integer _siNNN (e.g., si256)

Example: Vertical Vector Instructions

J

DO 0O

Add/Subtract/Multiply a
o _mm256_add/sub/mul/div_ps/pd/epi I Ix o [x o x
* Mul only supported for epi32/epu32/ps/pd b
* Div only supported for ps/pd
* Consult the guide! | I S
Max/Min/GreaterThan/Equals C
Sgrt, Reciprocal, Shift, etc... - - |z |-
FMA (Fused Multiply-Add) d

o (a*b)+c, -(a*b)-c, -(a*b)+c, and other permutations!

o Consult the guide!

~_m2564,b,c;
~_m256d=_mm256 fmadd_ pd(a, b, c);

Integer Multiplication Caveat

J Integer multiplication of two N bit values require 2N bits

J E.g., mm256 _mul epi32 and _ _mm256_mul_epu32
o Only use the lower 4 32 bit values
o Result has 4 64 bit values

d E.g., mm256 mullo_epi32 and __ mm256_mullo_epu32

o Uses all 8 32 bit values
o Result has 8 truncated 32 bit values

J And more options!

Case Study: Matrix Multiply

J Branch :
Boser & Katz,
“CS61C: Great Ideas In Computer Architecture”
Lecture 18 — Parallel Processing — SIMD

CS152: Computer Systems Architecture
GPU Computing Introduction

(1
>

Sang-Woo Jun
Winter 2021

Graphic Processing — Some History

(d 1990s: Real-time 3D rendering for video games were becoming common
o Doom, Quake, Descent, ... (Nostalgia!)

J 3D graphics processing is immensely computation-intensive

Ambient Diffuse Specular = Phong Reflection

Texture mapping Shading

Warren Moore, “Textures and Samplers in Metal,” Metal by Example, 2014
Gray Olsen, “CSE 470 Assignment 3 Part 2 - Gourad/Phong Shading,” grayolsen.com, 2018

Graphic Processing — Some History

d Before 3D accelerators (GPUs) were common

J CPUs had to do all graphics computation, while maintaining framerate!
o Many tricks were played

Doom (1993) : “Affine texture mapping”

* Linearly maps textures to screen location,
disregarding depth

 Doom levels did not have slanted walls or ramps,
to hide this

Y A511b
AMMOT | HEALTH! {IAnHS | 'S

Graphic Processing — Some History

d Before 3D accelerators (GPUs) were common

J CPUs had to do all graphics computation, while maintaining framerate!
o Many tricks were played

Quake Il arena (1999) : “Fast inverse square root”
magic!

float Q_rsqrt(float number)

{
const float x2 = number * ©.5F;
const float threehalfs = 1.5F;

union {

float f;

uint32_t i;
} conv = {number}; // member 'f' set to value of 'number’'.
conv.i = @x5f3759df - (conv.i >> 1);
conv.f *= (threehalfs - (x2 * conv.f * conv.f));
return conv.f;

Introduction of 3D Accelerator Cards

(d Much of 3D processing is short algorithms repeated on a lot of data
o pixels, polygons, textures, ...

J Dedicated accelerators with simple, massively parallel computation

Ordinary VGA Quake Open&L Quake on 3Dfx

Resolution: 320x200 Resolution: 640x480 ,

Colors: 256 Colors: 65,536 . . .
Framerelee i FRe Tt 30fps A Diamond Monster 3D, using the Voodoo chipset (1997)

Created by Mark D. Rejhc www rky.c . oy . .
se s e SR e S (Konstantin Lanzet, Wikipedia)

General-Purpose Graphic Processing Units
(GPGPU)

J Massively parallel architecture created for graphics processing, opened
up for general purpose programming
o Thousands of simple cores with high floating-point processing capability
* Floating point operations important for graphics processing
o Very fast off-chip memory originally used for graphics processing

HBM2 HBM2

il i . il

7 Memory Controller Memory Controller Memory Controller Memory Controller

eall == | I 551 551 | .| = == == | = lls2 -
| == = o (]]] - s
ealll == Al =1 g i g |
| S| &= 1l El el
23 il = = |== Ik |== | == llsz
— w
ol || =1 = =1 =1
=l Gl = = I = s | = llze
N == =] [=]1=]
23 | = = 1= ik | == =i £
ol || &5 &= =1 =1 z
¢3 = il = = | == llz | == Il
>
=g | =] = =1 =1
Bgs % Il &= &= = lls | = e &
)
=l || =] = =1
el |of] = = == |lls¢
C |
N | =|| = R = | =
o sr=mxIma L] s=z=suus |
. £ il == llzz =
m () __ ——] __ =— __
£ | || S=) S= == |
2 23 Gy ! == =
s W = =] === L W o
g 22 O | =i |
: IEE =1 [
m = = szzmzzzs szmz=a=s == Wm = |
O
M | =] &= == |
sodl =l =1 = = [la
ol |l == &= = |
gs -l .l =1 = = | == |k
Sl I == | &= =1
22 Y | == &= == il N
|| | =5] & = | z
£ | =] &= ==k 52
= |=]= =1l [=]=]
il =] = = == Nla; |
| =] | =] =l=| ==
vl | =l S &= ==)= | = s
= | =] e A1 =
eall =1 A1l = | =l | = lls: 5
| &= &= | =] &= |==| |==| i
24l =1 Al =1 ===k

J9)jonuo) Aiowap J9jjo3uo0) Aiowapy 19jjonu0) Aowapy 19jj03u0) Aiowapy ;

 { | A 1!]

CINGH CN8H

Massively Parallel Architecture For
Massively Parallel Workloads!

J NVIDIA CUDA (Compute Uniform Device Architecture) — 2007

o A way to run custom programs on the massively parallel architecture!

J OpenCL specification released — 2008

J Both platforms expose synchronous execution of a massive number of
threads GPU Threads

R

GPU |

Thread Copy over PCle Copy over PCle

CPU 1

Peak Performance vs. CPU

| Thoughput | Power | Throughput/Power

Intel Skylake 128 SP GFLOPS/4 Cores 100+ Watts ~1 GFLOPS/Watt
NVIDIA V100 15 TFLOPS 200+ Watts ~75 GFLOPS/Watt

GPU-Computing perf
BY nar vas
1.5X per year

Also,

1990 2000 2010

40 Years of Microprocessor Trend Data

GPU programming abstraction

d “SIMT” (Single Instruction Multiple Threads), introduced by NVIDIA
o Simply put: Identical program (“Kernel”) executed on multiple threads

o Thread ID is given as a parameter to the program,
so each thread can perform different work despite identical code

o Another kernel parameter is “block size”, the number of threads to use

CPU Code example GPU Code example
for (ii = 0; ii < cnt; ++ii) { __global__ void KernelFunction(...) {
C[ii] = A[ii] + BJii]; int tid = threadldx.x;
} int blocksize = ceiling(cnt/blockDim.x);

for (i=0; i < blocksize; ++i) {
int ii = blocksize*tid+i;
if (ii <cnt) C[ii] = A[ii] + BJ[ii];
}
}

Thread dimensions given as part of request from host software

Matrix Multiplication
Performance Engineering

NxN Matrix Multiplication with Unified Memory Management

8_
08
o
Q
L 41
|_
2_
01 e . : : ’ ’ . - «— No faster than CPU
16 32 64 128 256 512 1024 2048 4096 8192 16384
Matrix size
—e— Optimized —e— Unrolled
—e— Naive Matrix Multiplication —e— CUBLAS
—e— Tile Matrix Multiplication —e— Avoid Memory Bank Conflict

Results from NVIDIA P100

Coleman et. al.. “Efficient CUDA” 2017 Architecture knowledge is needed (again)

PCI Express 3.0 Host Interface

Memory Controller

HBM2

]

Memory Controller

®
=

i

| —
u

J9jjo3uo) Aiowapy

E

I
I
ZNEH

ngle Streaming Multiprocessor (SM) has

64 INT32 cores and 64 FP32 cores

(+8 Tensor cores...)

19jjouo) Aiowapy

i

i

Memory Controller

HBM2

Memory Controller

] I 1
e 3 i I i 1m i 11 i I
| g i L[k i i
SM SM SM SM SM SM SM SM &1 SM SM SM SM
\ i
(L i
i | 5 i 5 im [i i 1 m i
S S| SM SM SM SM SM SM SM SM SM SM M Si SM M S SM
TP TP TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC C TP TPC TPC TP TPC
GPC

J9jjo3uo0s Aiowspy

CWEH

i

J9jjonu0) Kiowapy

GPU processor architecture

J GPUs have thousands of threads running concurrently at multiple
gigabytes!

(d Much simpler processor architecture
o Dozens of threads scheduled together in a SIMD fashion
o Much simpler microarchitecture (doesn’t need to boot Linux!)

J Much higher power budget
o CPUs try to maintain 100 W power budget (Pentium 4 till now)
o GPUs regularly exceed 400 W

GPU processor architecture

(1 Cores are organized into units of “warps”

Y
o Threads in a warp share the same Fetch and decode units B
o Drastically reduces chip resource usage B
* One reason why GPUs can fit so many cores B ... |
v Vv v
o Basically a warp is one SIMD thread § E coe E
* But exposes multithread abstraction to the programmer K2 v |
D-Cache
_ Al Hit?l { Dam
o Typically 32 threads per warp for NVIDIA, but may change
* Warp size information is not part of programming abstraction Writeback
|

Source: Tor Aamodt

GPU processor architecture .

A 2
Thread Warp 3
Thread Warp 8
(J Each warp hardware can handle many sets of threads :
. . . Thread Warp 7
o Context switch in case of memory access request, to hide
memory access latency I_thch
d A Iarge block Qf threads can map across many Decode
streaming multiprocessors Yy ¥ Y
o Thread 0to 31 map to warp O, f T o f
Thread 32 to 63 map towarp 1, ...
P P 2| [2]...[2
- - cC
I 2 L 28 F
D-Cache o
Al Hit?l { Dam

Writeback

Warp scheduling caveats

J Remember: Threads within a block share the same fetch, decode units
o All threads in a warp are always executing the same instruction

o What if their execution diverges?
e e.g., if (tid%2) funcl(), else func2()
* e.g., if (A[tid] < 100) X++, else Y++

] Divergence across warps don’t matter
o Different warps, different fetch+decode

J What about intra-warp divergence?

Warp scheduling caveats

1 Intra-warp execution divergence incurs “control divergence”

o The warp processor must execute both paths, one after another

* Whole warp will execute one direction first with some threads suspended, and the other
direction with the other threads suspended

o If 32 threads go down 32 different branches, no performance gain with SIMD!

J Warps have been 32-threads so far, but may change in the future

if (threadidx.x < 4) {
Aj
B;
} else {
X;
Ya

}
Z;

» Time

2018, “Using CUDA Warp-Level Primitives,” NVIDIA

GPU memory architecture

J Not much on-chip memory per thread
o 1024 Registers per FP32 core
o 96 KB Shared memory

J Relatively fast off-chip “globa
o But not fast enough!
o GDDR5 or HBM2 can deliver up to ~1TB/s
o Shared across 2048+ threads...

I”

memory

J Pretty much no memory consistency
between blocks

o Once data goes to off-chip main memory,
explicit synchronization critical!

— — — Inter-Grid Synchronization — — —

4 Lot
JJJJJJJJJ

Grid 1

») ¥)
((((((

ccccccc
111111111111

ffffff
[aara

rrrrr

)))))
ccccc
o)

333333
ccccc
¥

CUDA Thread

%ﬂ—h Per-CUDA Thread Private Memory

Thread block

Per-Block

Local Memory

D

S
CELELCaret

BEEBBEES)
& CEriL
FEPrPrrrere

S | ——

Sequence

GPU Memory

GPU memory architecture

Jd Remember: A warp has 32 threads Q=]
o They can all be accessing shared memory at once - 7
 Difficult to have multiple ports on same memory region m: m f
o Serializing memory access will kill performance et [N [e f
* Performance will be limited by one shared memory access per thread per cycle e \ 7)
J Organized into banks to distribute access o e
o Best performance if all threads in warp access different banks ko
o Best performance if all threads access the same back (broadcast) /
o Otherwise, bank conflicts drastically reduce performance - |

8-way bank conflict
1/8 memory bandwidth

So what are GPUs good for?

] Bottlenecks to watch:
o PCle bandwidth is slow, so communication/computation ratio should be low

o SIMD operations at 32-thread warps, so less branching
e “Regularly structured” computation

J Good example is matrix multiplication

1 Also, Computing convolutions
o Deep neural networks became feasible with GPUs!

